This exam has 9 questions, for a total of 100 points +10 bonus points.

Please answer each question in the space provided. Please write full solutions, not just answers. Cross out anything the grader should ignore and circle or box the final answer.

Question	Points	Score
1	10	
2	14	
3	14	
4	10	
5	10	
6	10	
7	12	
8	20	
Total:	100	

Question	Bonus Points	Score
Bonus Question 1	10	
Total:	10	

Question 1. (10 pts)

Consider the function

$$
f(x, y, z)=x^{2}+z \sin y
$$

(a) Find the gradient of the function $f(x, y, z)$

Solution:

$$
\begin{aligned}
\nabla f & =\left\langle f_{x}, f_{y}, f_{z}\right\rangle \\
& =\langle 2 x, \quad z \cos y, \quad \sin y\rangle
\end{aligned}
$$

(b) Find the maximum rate of change of $f(x, y, z)$ at the point $(1, \pi, 1)$. In which direction does this maximum rate of change occur?

Solution: The maximum rate of change at $(1, \pi, 1)$ is

$$
\|\nabla f(1, \pi, 1)\|=\|\langle 2,-1,0\rangle\|=\sqrt{5}
$$

It occurs in the direction of the vector

$$
\left\langle\frac{2}{\sqrt{5}}, \frac{-1}{\sqrt{5}}, 0\right\rangle
$$

Question 2. (14 pts)

Given

$$
f(x, y)=2 x^{2}+y^{2}-x y^{2}+100
$$

Determine all local maximum, minimum and saddle points.

Solution: First, find all critical points. We need to solve

$$
\left\{\begin{array}{l}
f_{x}=4 x-y^{2}=0 \\
f_{y}=2 y-2 x y=0
\end{array}\right.
$$

The second equation is $2(1-x) y=0$. Case 1: $x=1$, then from the first equation, we see

$$
y^{2}=4
$$

So $(1, \pm 2)$ are critical points.
case 2: $y=0$, then $x=0$. So $(0,0)$ is a critical point.
Use the second derivative test,

$$
\begin{gathered}
f_{x x}=4 \\
f_{y y}=2-2 x \\
f_{x y}=-2 y
\end{gathered}
$$

So

$$
D(x, y)=f_{x x} f_{y y}-f_{x y}^{2}=8(1-x)-4 y^{2}
$$

(1) At $(0,0), D(0,0)=8$ and $f_{x x}(0,0)=4$, so $(0,0)$ is a local minimum.
(2) At $(1, \pm 2), D(1, \pm 2)=-16<0$, so $(1, \pm 2)$ are saddle points.

Question 3. (14 pts)

Use the Lagrange multiplier method to find the absolute extreme values of the function

$$
f(x, y)=3 x+y
$$

with the constraint $x^{2}+y^{2}=10$.

Solution: The constraint is

$$
g(x, y)=x^{2}+y^{2}-10=0
$$

Apply the Lagrange multiplier method,

$$
\left\{\begin{array}{l}
f_{x}=\lambda g_{x} \\
f_{y}=\lambda g_{y} \\
g(x, y)=0
\end{array}\right.
$$

That is,

$$
\left\{\begin{array}{l}
3=\lambda(2 x) \\
1=\lambda(2 y) \\
x^{2}+y^{2}-10=0
\end{array}\right.
$$

Using the first two equations, we get

$$
x=3 y .
$$

Plug this back into the equation

$$
x^{2}+y^{2}-10=0
$$

we get $y= \pm 1$. So we have two points

$$
(3,1) \text { and }(-3,-1)
$$

So the absolute max is $f(3,1)=10$, and the absolute \min is $f(-3,-1)=$ -10 .

Question 4. (10 pts)

Rewrite (but do not evaluate)

$$
\int_{-2}^{2} \int_{0}^{\sqrt{4-y^{2}}} \int_{\sqrt{x^{2}+y^{2}}}^{8-x^{2}-y^{2}}(x+z y) d z d x d y
$$

in cylindrical coordinates.

Solution: From the bounds, we can see that the region is exactly everything between the cone $z=\sqrt{x^{2}+y^{2}}$ and the upper hemisphere $z=\sqrt{2-x^{2}-y^{2}}$.

$$
\int_{-\pi / 2}^{\pi / 2} \int_{0}^{2} \int_{r}^{8-r^{2}}(r \cos \theta+z r \sin \theta) r d z d r d \theta
$$

Question 5. (10 pts)

Evaluate the following integral by switching the order of integration.

$$
\int_{0}^{1} \int_{x}^{1} e^{x / y} d y d x
$$

Solution:

$$
\begin{aligned}
& \int_{0}^{1} \int_{x}^{1} e^{x / y} d y d x \\
& =\int_{0}^{1} \int_{0}^{y} e^{x / y} d x d y \\
& \text { use substitution } u=x / y . \\
& =\left.\int_{0}^{1} y e^{x / y}\right|_{x=0} ^{x=y} d y=\int_{0}^{1}(e-1) y d y \\
& =\frac{e-1}{2}
\end{aligned}
$$

Question 6. (10 pts)

Rewrite (but do not evaluate)

$$
\int_{0}^{2} \int_{-\sqrt{2 y-y^{2}}}^{\sqrt{2 y-y^{2}}}\left(x^{2}+y^{2}+x\right) d x d y
$$

in polar coordinates.

Solution:

$$
\int_{0}^{\pi} \int_{0}^{2 \sin \theta}\left(r^{2}+r \cos \theta\right) r d r d \theta
$$

Question 7. (12 pts)

Find the area of the region inside the circle $x^{2}+y^{2}=4 x$ and outside the circle $x^{2}+y^{2}=2 x$.

Solution: use polar coordinates. We shall write the given equations in polar coordinates.

$$
\begin{aligned}
& x^{2}+y^{2}=4 x \Rightarrow r^{2}=4 r \cos \theta, \text { i.e. } r=4 \sin \theta \\
& x^{2}+y^{2}=2 x \Rightarrow r=2 \cos \theta \\
& \text { Area }= \iint_{D} d A \\
&= \int_{\pi / 2}^{-\pi / 2} \int_{2 \cos \theta}^{4 \cos \theta} r d r d \theta \\
&=\left.\int_{\pi / 2}^{-\pi / 2} \frac{r^{2}}{2}\right|_{2 \cos \theta} ^{4 \cos \theta} d r d \theta \\
&= \int_{\pi / 2}^{-\pi / 2} 6 \cos ^{2} \theta d \theta=\int_{\pi / 2}^{-\pi / 2} 3(1+\cos (2 \theta)) d \theta \\
&= \cdots=3 \pi
\end{aligned}
$$

Question 8. (20 pts)

E is the solid that is below the upper half of the sphere $x^{2}+y^{2}+z^{2}=4$ and above the cone $z=\sqrt{3 x^{2}+3 y^{2}}$.
(a) Write the volume of E as a triple integral in $x y z$-coordinates.

Solution:

$$
\int_{-1}^{1} \int_{-\sqrt{1-y^{2}}}^{\sqrt{1-y^{2}}} \int_{\sqrt{3 x^{2}+3 y^{2}}}^{\sqrt{4-x^{2}-y^{2}}} d z d x d y
$$

(b) Write the volume of E as a triple integral in cylindrical coordinates.

Solution:

$$
\int_{0}^{2 \pi} \int_{0}^{1} \int_{\sqrt{3 r^{2}}}^{\sqrt{4-r^{2}}} r d z d r d \theta
$$

(c) Write the volume of E as a triple integral in spherical coordinates.

Solution:

$$
\int_{0}^{2 \pi} \int_{0}^{\pi / 6} \int_{0}^{2} \rho^{2} \sin \varphi d \rho d \varphi d \theta
$$

We get the bounds for φ by writing the cone $z=\sqrt{3 x^{2}+3 y^{2}}$ in terms of spherical coordinates

$$
\rho \cos \varphi=\sqrt{3 \rho^{2} \sin ^{2} \varphi}
$$

so

$$
\tan \varphi=\frac{\sqrt{3}}{3} \Rightarrow \varphi=\frac{\pi}{6}
$$

(d) Use one of your answers from part $(a),(b)$ and (c) to calculate the volume of E.

Solution: Use spherical coordinates

$$
\begin{aligned}
& \int_{0}^{2 \pi} \int_{0}^{\pi / 6} \int_{0}^{2} \rho^{2} \sin \varphi d \rho d \varphi d \theta \\
& =\left.\int_{0}^{2 \pi} \int_{0}^{\pi / 4} \frac{\rho^{3}}{3}\right|_{\rho=0} ^{\rho=2} \sin \varphi d \varphi d \theta \\
& =\frac{16 \pi}{3}\left(1-\frac{\sqrt{3}}{2}\right)
\end{aligned}
$$

Bonus Question 1. (10 pts)

E is a solid that is below the sphere $x^{2}+y^{2}+z^{2}=2 z$ and above the cone $z=\sqrt{x^{2}+y^{2}}$.
(a) Express its volume by a triple integral in $x y z$-coordinates.

Solution: To get the upper bound, we need to use the equation $x^{2}+y^{2}+z^{2}=2 z$ to write z in terms of x and y. This amounts to solving a quadratic equation.

$$
\int_{-1}^{1} \int_{-\sqrt{1-y^{2}}}^{\sqrt{1-y^{2}}} \int_{\sqrt{x^{2}+y^{2}}}^{1+\sqrt{1-x^{2}-y^{2}}} d z d x d y
$$

(b) Use an appropriate coordinate system to evaluate the volume of E.

Solution:

$$
\int_{0}^{2 \pi} \int_{0}^{\pi / 4} \int_{0}^{2 \cos \varphi} \rho^{2} \sin \varphi d \rho d \varphi d \theta=\cdots=\pi
$$

We get the upper bounds for φ by writing $x^{2}+y^{2}+z^{2}=2 z$ in terms of spherical coordinates

$$
\rho^{2}=2 \rho \cos \varphi \Rightarrow \rho=2 \cos \varphi
$$

